Growing a Tech Team: Autonomy
vs Anarchy

Q @Soflesc Q

ankorstore

ankorstore o oo

or a product

New Home & Kitchen Food & Drinks Beauty & Wellness Fashion & Accessories Jewellery Baby &Kids Stationery & Hobbies £50 off Mother's Day

£100 minimum order | Free delivery from £300 | Flexible payment terms

We connect

300,000 independent retailers
with 30,000 brands across Europe.

REGISTER

Outstanding product selection Try new brands with ease Buy now, pay later
Shop nearly 2 million products from 30,000 Place low minimum orders of £100, plus get free Reduce your cash flow worries with our 60-day
curated brands across 28 countries in Europe shipping on multi-brand orders over £300 payment terms

S 77/ R) N s ss——

Our stack: a monolith

o o oy
o o oY
oy o oy
o oy oY
o o oy
o oy oY
o o oy

o oJ of

oy o oy
oy oy oy

oy o oy
oy oy oy

oy o oY
o og oy

A growing team : new challenges

\o/

O O
) ()
O
O

One team

A growing team : new challenges

One bigger team

A growing team : new challenges

Multiple squads

A growing team : new challenges

Multiple tribes

As the team grows, the coordination
problem grows. We need to
coordinate initiatives and the tech
stack across teams

A growing team : new challenges

1Tt

=N

Autonomy Anarchy

Working as a team

o,
S &

Do you work in a team or do you work alone?

O
-l

When we work alone we are in control of our choices

(and responsible for our bad choices)

0Oo

dD

When we work in a team, it must take precedence
over our personal convictions

You know, | don't think there are good

or bad technical choices. Me, if | had to

sum up my life today with you, | would
say that it is first of all choices.

@Soflesc

Example #1

Default configuration.

+++ New
<?php

namespace Fooj;

+use DateTimeImmutable; BraCket SpaCing

Print spaces between brackets in object literals.

+$d = new DateTimeImmutable();

Valid options:

e true - Example: { foo: bar }.

PHP CS leer o false - Example: {foo: bar} .

Default CLI Override API Override

true —-—-no-bracket-spacing bracketSpacing: <bool>

Prettier

Code styling

@ . W

Symfony Laravel

Framework

Should we create an interface when there is only
one implementation ?

Should we suffix interfaces with "interface” ?

Interfaces

Standards question - re interfaces, abstracts and traits:
1. PSR by-laws (class names with Interface / Trait suffix and Abstract prefix), or
2. behavioural design (essentially without them)?

Asking as we have mix of both in our code:
e interfaces - 48 with Interface suffix, 23 without,
e abstracts - 19 with Abstract prefix, 46 without,
e traits - 34 with Trait suffix, 2 without.

Should we decide on a common approach?

There is no universal truth, there are
choices (standards, best practices,
company guidelines, etc.). The choices

are made for the good of the collective
beyond individual sensitivities.

Our organisation

Functional perimeter

Our teams

(<O
- 3-8 Software
Engineering manager Engineers (BE & FE)
G &) B

Product designer Data engineer Product manager

...

.
~

Our objective

Sustalnably deliver business value

J
~ . ~ J

Engineering Product

The Product Manager is largely responsible for “What to do”,
and the rest of the team is responsible for “How to do it”.

Our guidelines

Engineering principles
&
Software architecture principles

Engineering principles

&5

Safety Transparency Small long-lived
squad
(,. _______________ R R -
== { |
I I
I I

Autonomy Collaboration Self-organization Iterative process

T — — — 0 EE— O E— 0 E— 0 S S S O M f S § S § S S S f S f S § S S S S f S f S S S E— —

Engineering principles

Software architecture principles

—

B o 29

Data privacy Always improve Environment parity Testing

® @ ©

Localisation Documentation No deviant system Disposability
behaviour

Software architecture principles

Request For Comments
& Communities of Practice

RFC & CoP

Front
—end

De&gn
system

o
))
Front Back
-end -end
J J
))
Design
[system Data {
J J
y\
Squad A

Squad B

Coordination between layers

RFC & CoP

Scaling Agile @ Spotify

with Tribes, Squads, Chapters & Guilds

Henrik Kniberg & Anders lvarsson

Coordination between layers

RFC & CoP

@, & o
Alignment W Open to everyone @@

Volunteer Cross-squads

RFC & CoP

O

If you do not participate, decisions will be
made without you

Request for comments

Request for comments

Decide Simple and Widely used Participation is
together iterative process encouraged

Request for comments : structure

Request for comments

Login Register

start» rfc > true-type

PHP RFC: Add true type

e Version: 0.2

e Date: 2022-04-7

e Author: George Peter Banyard, ¥ girgias@php.net

e Status: Accepted

e Target Version: PHP 8.2

» Implementation: % https://github.com/php/php-src/pull/8326
* First Published at: % http://wiki.php.net/rfc/true-type

- Title: short and clear
- Theme : Frontend, Backend,
Coding Rules ...

Request for comments

Introduction

PHP now has support for null and false as standalone types. However, true which is the natural counter part of false does not even exist
as a type.

The motivation in the Union Types 2.0 RFC to include false but not true was:

While we nowadays encourage the use of null over false as an error or absence return value, for historical reasons many internal functions
continue to use false instead. As shown in the statistics section, the vast majority of union return types for internal functions include false.

A classical example is the strpos () family of functions, which returns int | false.

While it would be possible to model this less accurately as int | boo', this gives the false impressi at the function can also return a true
value, which makes this type information significantly less useful to humans and static analyzers both.

For this reason, support for the fa'lse pseudo-type is included in this proposal. A true pseudo-type is not part of the proposal, because
similar historical reasons for its necessity do not exist.

- Summary:

- What is the problem to solve?
- What are the risks for the company if this problem is not solved?

Request for comments

Add support for using true as a type declaration, wherever type declarations are currently allowed. The true type does not allow coercions, exactly as
how the false type currently behaves.

class Truthy {
public true $truthy = true;

public function foo(true $v): true { /* ... */ x}

- Proposal:
- 0ne or more
- (etailed : what ? how ? risks?

Try not to be hiased when describing the solutions

Request for comments

Proposed Voting Choices

Voting started on 2022-05-29 and will end on 2022-06-12.

Accept Add true type RFC?
Real name
aaronjunker (aaronjunker)
alec (alec)
asgrim (asgrim)
ashnazg (ashnazg)
brzuchal (brzuchal)
crell (crell)

dams (dams)

0 © © © 06 © @ ©

- Vote system

Request for comments : key actors

Key actors in an RFC

0) ?té =
WHeri(s 0ters -
offs

Participants Committee

Key actors in an RFC : owner(s)

Write REC Ansvyer Organlse_extra
questions discussions

Key actors in an RFC: participants

Review Help improve

Key actors in an RFC: voters

NI

Read final RFC Vote

Key actors in an RFC: comitee

2 Q) %
<~/ @@)

Rotates Ensure the RFC Avoid biais Assess impact
goes forward

Key actors in an RFC: comitee

alnla

Select and RFC asignee

RFC examples

Translation key convention
Public Webhooks system

Git commit messages convention
External APl architecture

RFC examples

Translation key
convention Git commit messages

convention

I'm against this convention

@ Solution #1 - Conventional Commits

@ Solution #2 - Lightweight Conventional
Commits

@ None of the above (I don't agree with
any solution)

@ Abstain (I don't wish to vote or have no
preference)

RFC examples: git commit messages

Convention:

<type>: <commit message>

<commit message body>
Possible values for <type>:

feat: A new feature

Fixs A bug fix

docs: Documentation only changes

style: Changes that do not affect the meaning of the code (white-space, forme
refactor: A code change that neither fixes a bug nor adds a feature

perf: A code change that improves performance

tesk: Adding missing tests or correcting existing tests

Example:

feat: Add conventional commits

Added conventional commits for readability, changelog and improvement of the rel

Community of Practice

Community of Practice

Set of people that share a
concern or a passion for
something they do and learn
together how to do it better

Community of Practice

S

Light-weight Adaptive Flexible

2 8

Consensus driven Open to non-technical topics

Community of Practice

Backend DDD Testing
Front-End DevOps

Design system Engineering Manager

Community of Practice

Documentation Recurring B
meetings

_ Asynchronous
Contact point discussions

Community of Practice

Tiny (1 ~10) : no structure

Small (10 ~ 25) : community of practice

' Medium (25 ~ 50) : CoP + governance committee

Large (50 ~ 100) : CoP + GovGom + lead

Extra large (100+) : split into smaller groups

Community of Practice

CoP
Hily

GovCom

Community of Practice: GovCom

offs O

Volunteers ~10% CoP fotate
0)
Recurring Asynchronous
meetings discussions

Community of Practice: GovCom

Manage agenda i i Demsmn making

Lead the CoP & &

Moderate discussion

<
1

Negotiate with
hierarchy

My experience in the Backend CoP

Coffee with a staff engineer

Community of Practice: Backend

QD) B X

1H every two weeks Online meeting Everyone can
bring a subject

Community of Practice: Backend

5 @ Q

Share knowledge Ask for feedback Discuss new ideas

Community of Practice: Backend

% @ ok

Learn Explore creativity Take part in decisions

N\

% Challenges

7 <

Challenges

3 4

RFC adoption ~ Features VS CoP/RFC Find volunteers

O

“Looks nice, but this is not possible!”

@ Risks

DID YOU FINISH
THE SOFTWARE

NO, I™M STILL
PAYING OFF THE G
TECHNICAL DEBT LIHAT
FROM THE LAST
PROGRAMMER YOU
RUSHED.

WELL,
THAT
EXPLAINS

UNDERSTAND
WHY IT TAKES
50 LONG TO

@VINCENTDNL

“Technical debt is the implied
cost of additional rework caused
by choosing an edsy solution now

instead of using a better
approach that would take longer.”

Wikipedia

«Analogous with monetary debt,
If technical debt is not repaid, it
can accumulate interest,

making it harder to implement
changes.»

Wikipedia

“Technical debt is like when you
want to cook dinner but first you
have to do the dishes from the
night before”

Olivier Mansour - Former Manager

@Soflesc

= How to: tips

How to: win trust of stakeholders

$

J

Understand the Be transparent Define engineering
stakes principles

How to: measure time spent

Technical

Functional

Bugs

\V

How to: see the benefits

5 B

)

éga Platform stability Learn from each
1 other

Working confort Add new features

faster

How to: make it your own way

©

Find your own recipe lterate

Uniconlabs Eucalyp Th studio
Freepik -
Dimitril3 o ion Bomsymbols

Pixel Good ware Fharsan

perfect Thank you ! @ Zaenul Yahya

Turkkub _ -
Maxim Basinski ~~ Vectorsmarket15
Monkik Premium Fistudio

lcons made by the artists mentioned, from www.flaticon.com

Growing a Tech Team: Autonomy
vs Anarchy

0 @Soflesc O

#fullRemote #PHP #Laravel #lifelnSpain #startup

