
Our test instability prevent us
from delivering
Sofía LESCANO CARROLL

@SofLesc

Raise your hand if your tests make you angry or are
painful to write.

I have the solution!

No tests, no problem !
(Obviously, it's a joke ;))

Sofía Lescano Carroll
Senior Developer

Madrid

She / Her

Why do we even write tests ?

Why it is useful to write tests ?

Verify the app is
working as expected

Prevent
regressions

Difficulty knowing the
whole application Automation

Why it is useful to write tests ?

Peace of mind during development
and confidence in the code

If the tests are correctly written

Failing test

Test update

Detected an issue in
the app

What if I can't
trust my tests ?

What is a flaky test?

Flaky test

A test is said to be flaky or unreliable when
it gives both positive and negative results
despite no changes to the code or the test.

Flaky test

Since the result of the flaky test is
non-deterministic, reproducing and

correcting the error case can be very
complex.

Flaky test

A flaky test can pass
 ½ , ¾ , 199/200 …

If tests are correctly written

Test does not pass

Update the test

A problem in the
code was detected

What if I can't trust my tests ?

Test does not pass

Update the test

A problem in the code
was detectedIs there a true

issue with the
app?

Is there a true problem in my code ?

Multiple executions do not
always allow for a

conclusion

Is there a true problem in my code ?

Multiple executions do not always allow for a conclusion

Is there a true problem in my code ?

Multiple executions do not
always allow for a

conclusion
Time and ability to run

 the tests
Understand the goal of the
test even when it was not

written by me

Development cycle

We merge and deploy only when all tests pass

Linter Static
analysis

Unit
tests

Integration
tests

……

The impact of flaky tests

Degradation of
capacity to deliver

value
Developer
frustration

Uncertainty about the
status of the
application

The impact of flaky tests

There is so much noise that we no longer
take real problems seriously.

The impact of flaky tests

Pipeline build history
Unstable Problem introduced

Wasted time

- The test does not pass
- It's normal … it may just be flaky

The impact of flaky tests

A known problem
that can spread very

quickly

Raise your hand if from time to time when you
encounter a problem you pretend not to have seen it

A know problem

A known problem: perseverance and patience

Raise your hand if you've ever copied code that
existed in your project to create new code.

A worsening problem

Create new tests based
on old ones

New features > stability of the
technical stack

How to Write a
Good Flaky Test

Main causes of flaky test

Poorly written tests (dates,
business rules, etc.)

Timing issues

dependencies and
order problems

External dependencies

Main causes of flaky test

Poorly written tests (dates,
business rules, etc.)

Main causes of flaky test

Not so great
tests

Not so great
results

Main causes of flaky tests: poorly written tests

The test that stops working on March 1st

Main causes of flaky tests: poorly written tests

A problem for the developer of the future

public function testExportInvoices(){

 ...

 $firstInvoice = Invoice::factory()->for($brand)->create(['created_at' => Carbon::now()->subMonths(2)]);

 $secondInvoice = Invoice::factory()->for($brand)->create(['created_at' => Carbon::now()->subMonth()]);

 $thirdInvoice = Invoice::factory()->for($brand)->create(['created_at' => Carbon::now()]);

 $subject->exportInvoices($brand);

 ...

}

"No, but Sofia, don't you know that we're not
allowed to test on the 31st of each month?"

Main causes of flaky tests: poorly written tests

->SubMonthNoOverflow31 march -> 31 february ?!

Main causes of flaky tests: poorly written tests

Solution track: using a clock interface

// Des règles business à prendre en compte : pas de vente entre France et Angleterre

public function testAddItemToCart(){

 $client = Client::factory()->create(); // Le pays est aléatoire

 $brand = Brand::factory()->create(); // Le pays est aléatoire

 $product = Product::factory()->for($brand)->create();

 $subject->addItemToCart($client, $product);

 self::assertCount(1, $client->cart);

 ...

}

Main causes of flaky tests: poorly written tests

Random data yes, but not always

Main causes of flaky tests: poorly written tests

Randomness with uniqid(): string that could be cast as an int

uniqid('first_variable') -> first_variable_6569123456789

Sqlite Entity IDs -> MySQL

// Les ids de mysql ne sont pas remis à zéro entre les tests

public function testCreateBrand(){

 $brand = $subject->createBrand('mybrand@mycompany.com', 'FR')

 $logger->shouldReceive('info')->with('New brand created with id 1')->once();

 ...

}

1 test to correct ok, 234 tests to correct… not fun

Main causes of flaky tests: poorly written tests

Dependency with a Feature Flag

2/ The test is not explicit about the value of the FF

1/ Introduces a feature behind a Feature Flag

3/ If we change the FF on the environment the test no
longer passes

Main causes of flaky test

Timing issues

Main causes of flaky test: timing issues

Waiting time exceeded or reading ahead

Main causes of flaky test

Test dependency
and ordering

Main causes of flaky testing: dependent tests

// Une base de données partagée par vos tests

public function testCreateBrand(){
 $brand = $subject->createBrand(self::BRAND_EMAIL, self::BRAND_COUNTRY);
 ...
}

public function testEditBrand(){
 $brandToEdit = $repository->findByEmail(self::BRAND_EMAIL);
 $editedBrand = $subject->editBrand($brandToEdit, ['country' => 'ES']);
 ...
}

public function testListBrands(){
 $brands = $subject->listBrands();
 self::assertEquals('ES',$brands[0]->country);
 ...
}

Concurrency
Lack of clean up

(data, configurations)

Main causes of flaky testing: dependent tests

Main causes of flaky test

External dependencies

Main causes of flaky testing: external
dependencies

Call for a payment sandbox that may be unstable

How to
tackle this
problem

Understanding the problem

A human
problem

A technical
problem

Being aware

With a large code base and lots of developers, this will
happen sooner or later.

How to tackle the problem

Understanding the
impacts

Improving testing
practices Establish a

strategy

Have the right
toolsMesure

How to tackle the problem

Understanding the
impacts

Developers Product &
management

At the developer level

It's easier to replay the test and hope it passes.

At the company level

A flaky test can potentially fail on every running
workflow (PR, deployment, etc.) until it is fixed or

ignored.

At the company level

Waste of time and human and software costs

At the company level

A collective effort Allocate time

Quantify the problem

"If you can't measure it, you can't
manage it" - Peter Drucker

Quantify the problem: make it visible

Time spent
 on it

Mesure
evolution

Consequence
on releasesOccurrences

Improving testing practices

How to tackle the problem

Improving testing practices

Train
developers

Share the errors
encountered

Review the tests,
not just the code

Having the right tools & learning how
to use them

How to tackle the problem

Having the right tools & learning how to use them

Automation test
reporting tool

Infrastructure and
application monitoring

Continuous Integration
and Deployment

Detecting Flaky Tests with Allure and CircleCI

Detecting different results
with the same code

Detecting Flaky Tests with CircleCI

Monitoring the overall
status of the application

Most failed

Detect Flaky Tests with Datadog

Ignore a test detected by mistake

Restart flaky tests with CircleCI

Rerun a subset
of tests or the
failing step to

save time

Avoiding certain behaviors through code

Using a static analyzer
(PHPStan)

Implementing our own rules to secure the
code and help your developers

Avoiding certain behaviors through code

How to tackle the problem

Workaround strategies

How is deployment done?

AutomatedManual

Manual deployment: separate Test Suites

A specific tag

Separate risky
tests

Manual deployment force deployment

Force merge

Manual deployment force deployment

The fun of unstable testing: having another
unstable test that prevents it from being fixed

Manual deployment force deployment

Manual deployment force deployment

Manual verification
With great power comes great responsibility

Automated deployment : github merge queue

Automation of the merge
and release creation

process
Relies on pipeline and

testing
The problem can no longer

be solved manually.

Automated deployment : merge queue

Find PRs that can be
merged together

Will remove a PR if the
test suite does not pass

The PRs are compatible
but a flaky test is messing

with the results

A single flaky test
can block the merge

queue for hours

Avoid blocking the merge queue with a retry strategy

//mergequeue/retry-circleci-workflow.sh

TRIGGER_WORKFLOW="$(curl -s --retry 3 --retry-all-errors
"https://circleci.com/api/v2/workflow/${WORKFLOW_ID}/rerun" \
 --header "Circle-Token: $CIRCLE_TOKEN" \
 --header 'Content-Type: application/json' \
 --data '{"from_failed": true}')"
echo "$TRIGGER_WORKFLOW"

Give another chance to tests that have not
passed

How to tackle the problem

A retry strategy increases pipeline execution time
and hides the problem

How to tackle the problem

Define a process

A clear process

Report a new flaky
test

Deactivate the test
/!\ test coverage Urgent technical

debt

Challenges and
limitations

Take control of the situation as soon as possible

The more the problem progresses, the more
difficult it is to fix.

Not everyone follows the rules

We have a process but it is easier to replay
the test

Inspire by example rather than denounce

Not everyone follows the rules

Value the work of the people involved

Not everyone follows the rules

Value the work of the people involved

Not everyone follows the rules

Maybe the answer is ultimately to delete the test or test
differently.

Instabilities that are difficult to address

Maybe the answer is ultimately to delete the test or test
differently.

Instabilities that are difficult to address

E2E
Integration

Unit

When nothing works,
you can at least make

fun of it

When nothing works: make fun of it

A picture is worth a thousand words

Sofia

Monkik mynamepong

sripGeotatah

Handicon

Pixel
perfect

Freepik
lutfix

Icons made by the artists mentioned, from www.flaticon.com

Thank you !

Parzival’ 1997

juicy_fish

Rukanicon

M Karruly

Iconixar

Berkahicon

Wahyu Adam

nangicon
Smashicons

Thank you !

Sofía LESCANO CARROLL

@SofLesc

#fullRemote #PHP #Laravel #lifeInSpain #startup #doGood #quality

Our test instability prevent us
from delivering

